如果让你用贝壳做水泥,你的思路是什么?或许你会这样想:贝壳的主要成分是碳酸钙(CaCO3),水泥的主要成分是氧化钙(CaO),贝壳经过高温处理(煅烧)后产生的氧化钙(CaO)正是水泥的关键成分之一。的确是这样,思路正确!

在古代,一些文明曾利用贝壳作为建筑材料的一部分。例如,古罗马人就用贝壳粉末混合其他材料用以制作早期的水泥。从这种方法就能看出贝壳与水泥在建筑历史上的渊源。

“仿生贝壳”水泥

你在吃生蚝的时候有没有注意到,它的壳是分层的。想必你没有观察到这个细节吧?普林斯顿大学的工程师们发现了这一细节哦!

受生蚝壳和鲍鱼壳材料的启发,他们发明了一种新型水泥复合材料,该研究成果发表在《先进功能材料》(Advanced Functional Materials)期刊上。该复合材料的抗裂性比标准水泥高出17倍,经拉伸、变形而不断裂的能力比标准水泥高出19倍。这一发现可能有助于各种脆性陶瓷材料提高其抗裂性。

普林斯顿大学的研究人员发明了一种抗裂性和延展性均超越传统水泥浆体的材料。图片来源:普林斯顿大学工程学院网站

该项研究由普林斯顿大学土木与环境工程系Reza Moini教授牵头,带领团队开发了一种模仿贝壳内部结构的新型水泥复合材料,该结构包括硬的六角形矿物片和软的生物聚合物层。具体而言,这种复合材料采用交替层叠的水泥糊和聚合物薄片,大大提高了其抗裂性和韧性。

Moini的实验研究经常从生物学角度获得研发建筑材料的灵感。

该团队还开发了一种复合材料,其灵感来自一种名为珍珠层(或珍珠母)的天然材料,这种材料存在于某些贝类(如生蚝和鲍鱼)内部,由无机的碳酸钙微片(主要是文石)和有机的蛋白质层交替组成。

珍珠层不仅具有高硬度和高强度,还具备极好的韧性和抗裂性。其微观结构特征是由紧密排列的六边形片状晶体形成,这些晶体通过有机质胶结在一起,使得珍珠层在受到应力时能够有效地分散和吸收能量,防止破裂。珍珠层的独特结构和性能使其成为研究仿生材料和新型复合材料的灵感来源。

自然和合成珍珠层状复合材料的结构。图片来源:参考文献[1]

“仿生水泥”的优异性能

研究团队利用波特兰水泥浆(由波特兰水泥与水混合而成的浆状材料)等传统建筑材料结合有机聚合物,通过交替使用水泥浆片层与高拉伸性聚合物(聚乙烯基硅氧烷)薄层制造多层小梁,然后对这些梁的缺口进行三点弯曲试验,每根梁都在弯曲状态下测试,评估其抗裂性(或断裂韧性)。

通过交替使用水泥浆片和聚合物薄层来制造多层小梁。图片来源:普林斯顿大学工程学院网站

在实验中,研究人员制作了三种类型的梁。

第一种类型,由交替的水泥浆片和薄聚合物层组成。

第二种类型,使用激光在水泥浆片上雕刻六角形凹槽,然后将这些凹槽片堆叠起来,中间夹有薄聚合物层。

第三种类型与第二种类似,但研究人员完全切穿了水泥,形成了由聚合物层连接的、分离的六角形片。这些水泥浆片位于聚合物层之上,类似于珍珠层中霰石位于生物聚合物层之上。

研究人员将这三种类型与铸造水泥浆对应物(参考固体,整体式)进行了比较。

实验表明,参考梁的断裂是脆性的,这意味着梁在达到其断裂点时会突然完全断裂,没有延展性,而具有交替层的梁(无论是否带槽)则表现出更高的延展性和抗开裂性。

最明显的结果出现在完全分离的六角形薄片的梁中(第三种类型),这些薄片更类似于珍珠层。这些梁的延展性是固体水泥浆梁的19倍,断裂韧性是固体水泥浆梁的17倍,强度几乎相同。这为将来改善脆性陶瓷材料(如混凝土和瓷器)的抗裂性能提供了新的可能性。

其他领域的仿生研究

科学家们已经不是第一次对贝类进行仿生研究了,贝壳结构对科学家的启发不仅应用于水泥材料的研发,还引发了其他领域的仿生研究:

1. 高效水净化系统,来自生蚝滤水技术的灵感

生蚝对于保持海洋清洁必不可少,一只生蚝每天能够过滤多达二十几升的海水,可以清除水中的藻类、浮游生物和其他颗粒。

利用生蚝滤水机制开发的高效水净化系统,通过模仿生蚝的自然滤食过程,能达到清除水中杂质和污染物的效果。仿生净化系统采用类似的微孔结构和流体动力学原理,设计出能够高效过滤水中悬浮颗粒、微生物和有害物质的过滤装置,显著提高了水质净化效率。

2.高效无痛注射器,基于锥螺毒刺机制的研发

研究人员利用锥螺的毒刺机制开发出了一种高效无痛注射器,减少了医疗过程中的疼痛,降低了病患感染风险。锥螺的毒刺具有精细且强劲的刺入能力,能够迅速且无痛地注射毒液。仿生注射器模仿了这种机制,采用超细针头和特殊注射设计,实现了无痛且高效的药物递送,大幅提升了患者舒适度和医疗安全性。

3.仿生水下粘合剂,模仿贻贝粘附蛋白的应用

贻贝能够在潮湿环境和水下环境强力粘附在各种表面上,其粘附蛋白中含有大量多巴胺类分子,这些分子能够与多种材料形成稳定的化学键。研究人员模仿了这一机制,利用贻贝的粘附蛋白开发出一种高效的仿生水下粘合剂,通过合成类似多巴胺的聚合物,在水下实现强力粘附。该成果应用于海洋工程领域,医疗手术场景下的组织粘合和修复。

结语:贝壳的仿生研究体现了自然界智慧对材料科学的深远影响。科学家们通过模仿和改进自然界中的物质结构,开发出具有优异性能的新材料,这些材料在各个领域都有广泛的应用前景。未来,随着仿生技术的不断进步,我们期待更多创新性材料被开发出来。

参考文献

[1]Gupta, Shashank, Hadi S. Esmaeeli, and Reza Moini. "Tough and Ductile Architected Nacre‐Like Cementitious Composites." Advanced Functional Materials (2024): 2313516.

[2]Abaie, Elham, Limeimei Xu, and Yue-xiao Shen. "Bioinspired and biomimetic membranes for water purification and chemical separation: A review." Frontiers of Environmental Science & Engineering 15 (2021): 1-33.

[3]Dutertre, Sebastien, John Griffin, and Richard J. Lewis. "Phyla Molluska: The venom apparatus of cone snails." (2016): 327-340.

[4]Berger, Or, et al. "Mussel adhesive-inspired proteomimetic polymer." Journal of the American Chemical Society 144.10 (2022): 4383-4392.

策划制作

来源丨科普中国

作者丨Denovo团队

监制丨中国科普博览

责编丨董娜娜

审校丨徐来 林林

友情提示

本站部分转载文章,皆来自互联网,仅供参考及分享,并不用于任何商业用途;版权归原作者所有,如涉及作品内容、版权和其他问题,请与本网联系,我们将在第一时间删除内容!

联系邮箱:1042463605@qq.com